友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!阅读过程发现任何错误请告诉我们,谢谢!! 报告错误
小说一起看 返回本书目录 我的书架 我的书签 TXT全本下载 进入书吧 加入书签

科学发现的逻辑 作者:波珀-第21章

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!



况下,这两种方法都适用,那么可以想象会发生这种的事:两个理论有相同的维,但是,假如用建基于子类关系的方法来评价,可能有不同的可证伪度。在这种情况下,从后一种方法得出的判断应该被接受,因为这一种方法证明是比较灵敏的方法。在这两种方法都适用的所有其他情况下,它们一定会导致相同的结果;因为,借助维理论的一条简单定理可以表明:一个类的维一定大于或等于它的子类的维。

  39.曲线集的维

  有时我们可把我所说的一个理论的“应用场”很简单地等同于它的图形表示场,即图纸上的一块面积,我们在这张图纸上用图形表示理论:可认为这个图形表示场的每一点相应于一个相对原子陈述。因此理论相对于这个场的维,就等于相应于这理论的曲线集的维。我将用第36节中的两个陈述q和s来讨论这些关系(我们用维作比较适用于具有不同谓词的陈述)。假说q——所有行星轨道都是圆——是三维的:要证伪它,至少需要这场的四个单称陈述,相应于它的图形表示的四个点。假说s:所有行星轨道都是椭圆,是五维的,因为要证伪它,至少需要六个单称陈述,相应于图形上的六个点。我们在第36节里看到:q比s更易证伪:因为所有圆都是椭圆,所以有可能把比较建基于子类关系之上。但是使用维使我们能比较以前不能比较的理论。例如,我们现在可以比较一个圆假说和一个抛物线假说(它是四维的)。“圆”、“椭圆”,“抛物线”,每一个词表示一个曲线类或集;这些集中的每一个集有d个维,假如挑选出这集中的一条特定曲线,或者给以特征描述,d点是必要和充分的话。在代数表示式里,这曲线集的维依赖于参量的数目,这些参量的值我们可以自由选择。所以我们可以说,用以表示一个理论的一个曲线集的、可以自由测定的参量的数目,是那个理论的可证伪(或可检验)度的特性数。

  与我的例子中的陈述q和s相联系,我愿意对Kepler发现他的定律作一些方法论的评论。

  我并不想提出这样的看法:完美的信念——指导Kepler作出发现的助发现原理——是有意或无意地由对可证伪度的方法论考虑所引起的。但是,我的确认为,Kepler取得成功部分地由于这一事实:作为他出发点的圆假说,相对地说是易于证伪的。假如Kepler从由于其逻辑形式不是如圆假说那样易于检验的假说出发,考虑到计算的困难,这种计算的基础是“在空中”——可以说,漂浮在天空中,以不知道的方式在运动,他很可能得不到任何结果。Kepler通过证伪他的圆假说达到的毫不含糊的否定结果,事实上是他的第一个真正的成功。他的方法也被证明完全正确,因而他可以继续进行下去;特别是因为,即使这第一步尝试也已经产生一些近似值。

  无疑,Kepler定律可以用另外的方法找到。但是我想,这是引致成功的方法,这一点不仅是偶然的。这相当于消去法,仅当理论足够易于证伪——足够精确,能够和观察经验相冲突时,这种方法才是可应用的。

  40.两种减少曲线集维数的方法

  非常不同的曲线集可以有相同的维。例如,所有圆的集是三维的;但是所有通过一个给定点的圆的集是一个二维集(和直线集一样)。如果我们要求圆应该都通过两个给定点,则我们得一个一维集,如此等等。每一个添加的要求,即一个集的所有曲线必须通过多一个给定点,减少这个集的一个维。

零维类

一维类

二维类

三维类

四维类

直线



抛物线

通过一个给定点的直线

通过一个给定点的圆

通过一个给定点的抛物线

通过一个给定点的圆锥曲线

通过两个给定点的直线

通过两个给定点的圆

通过两个给定点的抛物线

通过两个给定点的圆锥曲线

通过三个给定点 的圆

通过三个给定点的抛物线

通过三个给定点的圆锥曲线

  除增加给定点数的方法以外,还有其他方法也可以减少维数。例如,给定长短轴比的椭圆集是四维的(和抛物线集一样),已知偏心率数值的椭圆集也是这样。从椭圆过渡到圆,当然等于指定一个偏心率(0)或者一个特定的长短轴比(1)。

  因为我们对评价理论的可证伪度感兴趣,现在我们要问:这些减少维数的种种方法对于我们的目的来说是否是等价的,或者我们是否应该更仔细地考察它们的相对价值。一条曲线必须通过一定的单一点(或小区域),这样的规定常常是联接于或相应于某一单称陈述即一个初始条件的接受。另一方面,比方说从一个椭圆假说过渡到一个圆假说,显然相应于理论本身的维的减少。但是,如何区别清楚这两种减少维的方法?一种减少维的方法并不根据有关曲线的“形式”或“形状”的规定来进行;即例如通过指定一个或更多的点,或者通过某种等价的规定来减少维,我们可以给这种方法一个名称:“内容的减少”。在另一个方法里,曲线的形式或形状规定得更窄,例如,我们从椭圆到圆或从圆到直线等等,我称之为维数的“形式的减少”的方法。

  然而,要使得这个区别截然分明是不很容易的。这一点可以这样来看:减少理论的维用代数术语来说意味着以常数代替参数。现在,我们如何能区别不同的以常数代替参数的方法,是不大清楚的。从椭圆的一般方程过渡到圆的方程这种形式的减少,可以被描述为使一个参数等于0,使第二个参数等于1。但是,如果另一个参数(绝对项)等于0,那么这就意味着内容的减少,就是规定椭圆的一个点。但是,我想,如果我们看到它和普遍名称问题的联系,就有可能使得区别清楚起来。因为内容的减少引进一个个别名称到有关曲线集的定义中,而形式的减少则引进一个普遍的名称。

  让我们设想,也许根据“直指定义”,给予我们某一个别的平面。在这个平面上的所有椭圆集可以用椭圆的一般方程来定义;圆集可以用圆的一般方程来定义。这些定义不依赖于我们在这平面的什么地方画与它们有关的(Descartes)坐标;因此,它们不依赖于坐标的原点和方向的选择。特定的坐标系统只能由个别名称来决定;比方说由直接指定它的原点和方向来决定。由于椭圆(或圆)集的定义对于所有Descartes坐标是相同的,它不依赖于这些个别名称的规定:它对Euclid群的所有坐标变换(位移和相似变换)是不变的。

  另一方面,假如人们想定义共同的在平面上有着一个特殊个别点的椭圆(或圆)集,那么我们就必须运用一个方程,它对于Euclid群的变换不是不变的,而是和一个单称的,即个别地或直指地规定的坐标系统相联系的。因此,它是和个别名称相联系的。

  可以把这种变换安排在一个等级系统里。对于比较一般的变换群是不变的一个定义,对于比较特殊的变换群也是不变的。对于一个曲线集的每一个定义,有一个它特有的(最一般的)变换群。现在我们可以说:一个曲线集的定义D1与一个曲线集的定义D2“同样一般”(或比它更一般),假如D1和D2(或一个更一般的定义)对于同一个变换群都是不变的话。一个曲线集的维的减少现在可以被称为形式的,假如这个减少并不减弱定义的一般性;否则它可以被称为内容的。

  如果我们通过考虑它们的维来比较两个理论的可证伪度,显然我们必须在考虑它们的维的同时考虑它们的一般性,就是它们对于坐标变换的不变性。

  按照理论(如Kepler理论)事实上是否作出了关于世界的几何陈述,或理论是否只是在它可以用图形来表示的意义上是“几何的”——例如,表示压力依赖温度的图形,上述程序当然必定是不同的。对后一种理论,或相应的曲线集提出这样的要求:它的定义必须对于比方说坐标系统的旋转是不变的,这是不适当的;因为在这些情况下,不同的坐标可以表示完全不同的东西(一个是压力,另一个是温度)。

  这就是我对用以比较可证伪度的方法的阐述的结论。我相信这些方法能帮助我们阐明认识论问题,例如简单性问题,我们接着就要讨论这个问题。但是,我们将要看到,还有其他问题通过我们对可证伪度的考察而得到新的说明;特别是所谓“假说的概率”或验证
返回目录 上一页 下一页 回到顶部 0 0
未阅读完?加入书签已便下次继续阅读!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!