友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!阅读过程发现任何错误请告诉我们,谢谢!! 报告错误
小说一起看 返回本书目录 我的书架 我的书签 TXT全本下载 进入书吧 加入书签

复杂性中的思维-第48章

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!



  在学习阶段,网络中输入的是一定时期实际上的每天的交换率,例如从1989年2月9日至1989年4月18日。以这种学习数据为基础,该网络对于后面19天的发展进行预测。预测结果与实际上的曲线进行比较,以测量该系统的精确性。已经用后向传播方法对于几个多层结构进行了考察。它们以自组织方式发展起来对于预测特定的总体启发性。例如,如果一次预测接近该日期以后某天的实际值,那么错误就是相对小的。这种拇指规则的启发方式,在于这一事实:行情趋势的变化比起它保持不变来是更为不可能的。图5.22a,b示意了,预测曲线(+)和对于银行(merzbank)、公司(Mercedes)的实际股票行情曲线(-)。 
   
  显然,后向传播的馈向网络在技术上非常有趣,尽管它们看来与生物大脑中的信息处理没有多少相似性。在4.2节中,我们已经分析了具有反馈(图4.8b)和霍布类型学习(图4.9a)的霍普菲尔德系统,它显得也是生物大脑的工作方式。在均匀的布尔神经元网络的情形,神经元的两种状态可以与处于外磁场中的电子自旋的两个可能值联系起来。一个霍普菲尔德模型是一个动力学系统,与金属退火过程类比,将它看作是一种能量函数。由于它是非增的单调函数,系统进入局部能量极小值,相应于局部的稳定稳恒态(不动吸引子)。 
   
  因此,霍普菲尔德系统的动力学演化可以相应于精神认识。例如,一个代表字母“A”的始态噪声图像向代表正确图像的终态演化,它用若干个例子来对系统进行了训练(图4.9b)。物理解释使用了平衡热力学的相变。正确的模式与不动点或平衡终态相联系。一个更灵活的推广是波耳兹曼机,它具有非确定论处理器元的随机网络构造,以及分布的知识表示,数学上相应于一个能量函数(图4.11b)。 
  关于弛豫的一般思想是,一个网络收敛到以局域相互作用为基础的或多或少总体平衡状态。通过反复地修订局部的联接(例如在霍普菲尔德系统通过霍布学习策略),网络作为一个整体终于弛豫地进入了稳定的、优化的状态。我们可以说,局域相互作用导致了协同寻求,它不是受指导的,而是自组织的。一些网络对于精神类型的活动运用了协同寻求策略,例如,对于寻找可能的假设。设想竞争假说的一定范围由神经单元来表示,它们可以激活或抑制自己。于是该系统就离开了不太可能的假设,而奔向更可能的假设。 
  1986年,麦卡洛克和拉梅尔哈德把这种认知解释运用于模拟两可图的识别。两可图是在格式塔心理学中为人们所熟知的问题。图5.23a示意了一个协同寻求的网络,模拟识别尼克尔立方体两种可能的取向之一。每一单元就是一种涉及尼克尔立方体的一个顶点的假设。缩写是B(黑)、F(前)、L(左)、R(右)。U(上)、L(下)。假设网络由两个联接的子网络构成,每一子网络相应于两种可能解释之一。 
   
  不相容假设是负的联接,一致性假设是正的联接。权重的分配使得2个负的输入与3个正的输入格均衡。每一单元都具有3个正的相邻联接和2个竞争的负的联接。每一单元都接受来自激发的一个正的输入。要寻求的假设子网络是最适合于输入的网络。微小的涨落(观察者特定视野的某个小的细节)可以决定哪一种长期的取向被观察到。 
  为使网络的动力学形象地表示出来,假定所有的单元都是关闭的。然后,一个单元接收了一个随机的正值输入。网络将向一个子网络的所有单元都被激活而所有其他网络的单元都被关闭的状态变化。在认知解释中,我们可以说,此系统已经弛豫地进入了尼克尔立方体两可图左面和右面的两种解释之一。 
   
  图5。23b示意了3种不同的演化模式,它们敏感地依赖于不同的起初条件。环路的大小表明每一单元的激活程度。在第3种变化中,达到的是一种决非处在平衡态中的未确定的终态。显然,这种网络的构造原理是协同计算、分布表示和弛豫程序,这是人们在复杂系统动力学中所熟知的。 
  过去已经提出来许多人工神经网络的设计。它们是受到不同的原理如物理学、化学、生物学、生理学的启发,有时只是出于技术的目的。复杂系统探究方式的共同原理是什么?在前面的章节中,协同学引进了作为处理非线性作用复杂系统的跨学科方法论。对于推动从许多科学学科中确立的共同原理来建立特殊复杂系统的模型,协同学看来是一种成功的自上而下的策略。其主要思想是:复杂系统整体状态的形成可以解释为,处于远离热平衡的学习策略中系统元素的(宏观的)相互作用的演化。整体的有序状态解释为相变的吸引子(不动点、周期、准周期或混沌)。 
  例如,模式识别被解释为类似于应用在物理学、化学和生物学中的演化方程的相变。我们获得了一种跨学科的研究纲领,它使我们把神经计算的自组织解释为由共同原理支配的物理的、化学的和神经生物学的演化的自然结果。正如在模式形成的情形下,一种特定的识别模式(一张原型的脸)用序参量描述为一组所属特征的集合。 
  一旦其中属于该序参量的部分特征给定了(例如一张脸的一部分),序参量将完成所有的其他特征,所以整个系统是作为联想记忆发生作用的(例如给出脸的一部分使脸面根据贮存的原型脸重建出来)。按照哈肯的役使原理,识别出来的模式的特征相应于模式生成期间受役使的子系统(图5.24)。 
   
  如果将作为原型学习的一小部分脸部提供给一台协同计算机,那么它就能够用编码了的姓名来完成整张脸(图5.24b)。不同程度的模糊图像序列相应于协同计算机中状态的相变。 
  当一个不完整的模式提供给神经元,在不同神经元状态——每一状态都相应于一个特定的原型模式——之间的竞争就开始了。这种竞争中取胜的是相应于原型模式的神经元系统的整体状态,它对所提供检验的模式有最大的相似性。与对于模式形成有效的动力学完全相似,当一个检验的模式提供给协同计算机时,它将把检验的模式从起始状态(t=0)拉向一个特定的终态,相应于原型模式之一。 
  检验模式的演化,可以用势场中具有一定位置矢量的粒子的阻尼运动来说明。图5。24c示意了一个这种二维势场的例子。这两个原型相应于两个低谷。如果提供了一个模式,它的特征不可能精确地表明与原型的特征一致,那么该粒子的位置就处于势场的低谷之外。显然,识别是一种对称破缺,这已在图4.20a中的一维例子中进行了说明。 
   
  在协同学系统中,势场地形的形状可以由调整序参量来改变。由于协同学系统是开放的,控制参量可以代表能量、物质、信息或其他来自系统环境刺激的输入。当控制参量低于某个临界值,地形可以具有一个稳定的位置如图4.20a中的用虚线标出的一个低谷。在涨落引起的每一激发以后,序参量弛豫地向其静止态演化。当控制参量超过了一定的临界值时,先前稳定的状态就变得不稳定了而被图4.20a中两个低谷的两个稳定状态所取代。 
  协同计算机的学习程序相应于势场地形的构造。势强度用地形形状表示,示意神经联接的突触力。协同学探究方式的一个优点在于,标志着一个模式的数量巨大的微观细节是用一个宏观序参量来确定的。因此,协同计算机运用了典型的复杂性约化方法,这种方法已经应用在自然进化的协同学模型中(对照3.3节)。 
  序参量方程允许一种新的(非霍布的)学习,即一种最小化突触数量的策略。与旋晶类型的神经计算机(例如霍普菲尔德系统)相比较,神经元不是阈值元素,而是实施简单的乘法和加法。但是,旋晶类型的神经计算机与协同学计算机的基本区别在于:旋晶类型的复杂系统是物理学上的封闭系统。因此,它们的模式生成是由保守自组织推动的,没有任何的能量、物质或信息从外部输入。由保守自组织形成的典型模式是冬天窗户上的“死的”冰花,它们是在低能低温的平衡态冻结起来的。保守自组织的相变可以完全用波耳兹曼的平衡热力学原理来解释。 
  在3.3节中,我们已经解释了活系统的模式生成。它只有在远离热平衡时输入
返回目录 上一页 下一页 回到顶部 0 0
未阅读完?加入书签已便下次继续阅读!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!