友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!阅读过程发现任何错误请告诉我们,谢谢!! 报告错误
小说一起看 返回本书目录 我的书架 我的书签 TXT全本下载 进入书吧 加入书签

科普-中华学生百科全书-第69章

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!



又会发生什么情况呢?我们再以一个美国独立战争时期发生的一件事来说
明。
    当时,英国殖民主义者为了巩固它在美国的殖民统治地位和有效镇压美
国人民的起义,曾组织了一次重要的战役。英军指挥者设想一支军队从加拿
大出发,同另一支从纽约出发的军队,在一个名叫萨拉托加的地方汇合,对
那里的起义队伍形成两面夹击的进攻阵势,企图一举消灭起义军队。但是战
役的结果却并不像英军指挥者设想的那样。当其中一支部队到达指定地点
时,却始终不见另一支英军前来汇合,结果形成了孤军奋战的被动局面,惨
遭失败。事后才查明,原因是由于疏忽,行动命令只发给了一支部队,另一
支部队根本就没有接到命令。
    显而易见,英军失败的主要原因是信息受阻。其下属根本没有收到上级
的任何指示,因为英军的信息传递只有自上而下(命令),而没有自下往上
的信息反馈。所谓反馈(Feed…back),是指当指挥者控制系统发出的指令信
息(也叫系统输入)输入后,通过系统内部变换后又将信息作用的结果(也
叫系统输出)返回到系统输出端,并根据系统输出与系统输入(规定值)是
否吻合,再对系统施加作用的过程。这也正是控制论创始人维纳所提出的“双
向通讯”的慨念,既有从系统输入到系统输出的正向信息传递和变换,也有
从系统输出端返回输入端的反馈信息。从控制论的观点来看,系统的自动控
制过程正是通过“双向通讯”的信息反馈联系而实现的。信息在系统中的这
种循环往返过程中,不断变换形式,最终实现控制目标。这就是控制论所揭
示的自动控制系统的反馈机制,它是自动控制系统的第二个特点。

反馈机制

    在山村野地,一群小鸡在嘁嘁喳喳地寻找食物,时而翻动草屑,时而啄
食幼虫,怡然自得。一只饿鹰从远处飞来,发现了猎物,急速俯冲下来,吓
得小鸡四处逃窜,于是演出了一幕“追踪—逃逸”的活戏剧。在这个“追踪
—逃逸”系统中,对老鹰来说,目标是小鸡,控制机构是鹰脑(发出指令),
执行动作的机构是鹰翅、鹰爪和嘴。在整个追踪过程中,鹰借助眼睛不断地
获得反馈信息(即小鸡的位置、速度和方向变化),据此及时调整自己的动

作,直到抓住目标。
    从这场“鹰鸡殊死之战”的过程中,我们可以看出信息反馈和反馈控制
的重要性。
    其实反馈作为一种技术手段自动控制目标,早在古代就开始了,只不过
那时人们尚未从理论上加以升华。相传早在 2 千多年前,我国和古希腊都曾
发明过水钟(“铜壶滴漏”)。这种简单的装置中就包含了深奥的反馈控制
原理。水钟的基本要求是控制水流的速度恒定以达到准确记时的目的。控制
方式如图所示。

    反馈控制早期应用的另一个实例是离心式调速器如图所示。大家都知
道,1768 年,英国工人瓦特(J.Watt,1736~1819 年)发明了蒸汽机,从而
导致了西方国家的第 1 次产业革命。据说瓦特小时候家里很穷,没有上过学,
可是他十分爱学习,特别爱动脑子。一天,小瓦特在厨房里看奶奶做饭,正
巧炉子上的一壶水开了,壶盖“啪啪”地直响,还不断的跳动。小瓦特看了
半天,感到很奇怪,就问奶奶:“什么东西使壶盖跳动不停呀?”奶奶说:
“水开了,壶盖就动呗!”瓦特进一步问道:“为什么水烧开了,壶盖就会
动呢?是不是有什么东西在里面推动它呢?”奶奶看瓦特老是问个不停,就
说:“我不知道,你自己去看吧!”为了弄清壶盖为什么会跳动,瓦特常常
坐在炉旁边仔细观察和思索,后来,他终于搞清楚了,原来,水烧开后,会
产生一股“气”(即水蒸汽),是“气”的力量在推动壶盖上下跳动。瓦特
长大后,正是利用这个道理发明了蒸汽机。

    为了进一步解决蒸汽机所推动的机械装置的速度控制问题,1788 年瓦特
在系统中采用了离心式自动调速器。据估计,在 19 世纪中,仅英国就有 7.5
万台装有瓦特调速器的蒸汽机装置。我们又一次看到了反馈控制的神奇魅
力。
    有趣的是,我们人体本身几乎处处都具有高速复杂控制能力的反馈控制
系统。不知大家注意过没有,人体在正常状态下,无论春夏秋冬环境如何变
化,都能保持体温、血压、血糖浓度、呼吸和心跳率基本恒定。大多数动物
也具备这种功能。但是大家是否知道人类和动物如何实现这种自我调功能的
机理呢?说白了,关键还是反馈控制的功劳。人体内显然没有像继电器、温
度计和调速器这一类东西,而是依靠更为复杂的生物化学或生物物理过程来
“检测”各种生理变化的。例如,血液中葡萄糖浓度若偏离标准值,人体检
测到这条信息后就会由大脑中枢神经发出控制胰岛素分泌的命令(信息),
由胰岛素分泌量的变化来调整血糖浓度使之恢复到正常值。同样的,人体内
各种分泌和神经系统,每时每刻(即使当你睡着的时候)都在参与各种自我
调节活动,以保持人体内部状态和心理状态基本稳定。这些自我调节过程和
我们前面介绍的自动恒温、离心调速器的原理基本上是一致的。
    反馈控制的概念还可以应用到更为广泛的领域,如教师讲课时,在认真
讲授书中内容的同时,还密切观察同学们的反应,并随时提问,课后批改作
业。这后面的三种方式就是为了获取反馈信息,以检查同学们掌握教学内容
的程度,并根据这些信息调整讲授方法和进度,确保教学质量。
    反馈机制对于人们的各种社会实践活动也具有十分重要的意义。就拿企

业管理来说吧,管理也是一种深奥的控制活动,必须紧紧抓住信息反馈这个
关键环节。管理没有信息反馈,只有上情下达,而无下情上达,就必然会脱
离实际而出乱子,企业也会弄得一塌糊涂。同样,对经营决策者来说,市场
信息的反馈也是至关重要的,不注意市场需求变化而关起门来盲目生产的决
策者,必然会导致企业亏损,甚至倒闭。
    从上面的讨论可以看出,信息概念和反馈思想是控制论的两个基本出发
点。

陀螺与航行自动控制

    大家小时候可能都玩过陀螺,当你掌握了正确方法用鞭子抽打它几下以
后,它就会尖顶朝下竖起来,并绕其轴线旋转而不倾倒。
    可别小看陀螺这小玩意儿,人们正是根据其自旋不倒的原理而设计制造
出了五花八门的精密陀螺仪,为各种飞行器(如飞机)、导弹、人造卫星等)
的飞行自动控制奠定了基础。尽管陀螺仪的外表看起来与常见的陀螺不大一
样,其大小也不尽相同(如用在飞行仪器上的陀螺仪最轻者只有几十克重,
而一个稳定核潜艇的陀螺仪却重达 55 吨),但是基本原理却并无二致。
    陀螺仪对于现代飞行控制系统来说可谓举足轻重。它不仅对整个系统的
工作起着决定性作用,而且它的精度高低、可靠性程度和使用寿命长短等指
标,对飞行器的稳定性和精确性都有着至关重要的影响。
    陀螺仪的最早应用领域是航海事业。19 世纪人们广泛利用陀螺仪标定航
向,在漫长的航海史上写下了新的一页。从 20 世纪 40 年代开始,陀螺仪便
在导弹武器及航空航天事业上得到广泛应用,其稳定性和工作精度也随着科
学技术的进步和工艺水平的提高而迅速提高。目前陀螺仪已有滚珠轴承、气
浮、液浮、挠性、激光等类型。
    陀螺仪在高速旋转时,能够抗拒任何外力和干扰的影响,保持其自转轴
相对于惯性空间方向上稳定不变。当飞行器的飞行姿态偏离了预定正确方
向,陀螺仪在转轴与飞行方向之间的夹角便发生了变化,飞行器上的检测元
件立刻就可测量出来,并同时发出控制信号,通过执行机构的作用使飞行器
的状态恢复正常。因此,这种自动控制系统也叫做“姿态稳定系统”。
    陀螺自转轴方向不变的原理除应用于导弹的制导和飞机姿态控制以外,
在宇航技术中也同样得到广泛运用。例如陀螺仪用在人造卫星上,可以保证
人造卫星不受外界干扰而稳定运行在预定轨道上。不论人造卫星绕地球转到
哪个位置或受其他什么外界干扰,卫星上的陀螺仪始终是指向空间某一预定
返回目录 上一页 下一页 回到顶部 0 1
未阅读完?加入书签已便下次继续阅读!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!