友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!阅读过程发现任何错误请告诉我们,谢谢!! 报告错误
小说一起看 返回本书目录 我的书架 我的书签 TXT全本下载 进入书吧 加入书签

材料-第1103章

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!



它们在普通的光学观测中只是一个类似恒星的光点;而在分光观测中,它们的谱线具有很大的红移,又不像恒星。
  这些天体统称为“类星体”。其中,有些因不断向外辐射无线电波,被称为“类星射电源”;有些不辐射无线电波,但也具有很大的红移,被称为“蓝星体”。到目前为止,经确认的各种类星体已有七千多个。
  哈勃太空望远镜拍摄的距地球一百五十亿光年的类星体PKS2349的照片。(HST)
  距地球90亿光年的类星体照片,由哈勃太空望远镜拍摄。(HST)
  这张哈勃照片展示了由一个类星体星系造成的特殊十字型引力透镜现象。(HST)
  这是一张类星体与普通星系合并的照片,它动摇了旧式类星体理论。(HST)
  这是一张类星体星系照片。它可能是在与邻近矮星系的合并中获得能量。(HST)
  这是几个不同类型的恒星系,每个星系中心都包含一个类星体。(HST)
  我们知道,从天体的红移量可以得到天体远离我们而去的速度和它们与我们的距离。而类星体的红移量之大,使天文学家非常吃惊。据观测,绝大多数类星体离我们远去的速度为每秒几万公里至十几万公里,有些甚至达到每秒二十七万公里的“疯狂”速度,已达光速的百分之九十!
  类星体是人类迄今为止观测到的最遥远的天体,大都距地球一百亿光年以上。二十世纪八十年代初期,澳大利亚的天文学家观测到的一个类星体距离地球竟达二百亿光年,也就是说,我们现在观测到的形成这个类星体图像的光是在二百亿年以前发出的!这一下子把人类对宇宙认识范围扩大到二百亿光年之遥。如果真是这样,那么它们自身的能量比一般星系能量还大上千倍。
  然而令人惊讶的是,类星体的直径只有普通星系的十万分之一到百万分之一,还不到一个光年,体积类似太阳。尽管个子如此的矮小,可它释放出来的能量却相当于二百个星系,或二十万个太阳的能量总和。类星体因而被称为“宇宙中的灯塔”。
  类星体的体积不大,却又释放出如此强大的能量。这按照普通的物理规律是不可思议的。经过多年的研究,专家们认为类星体可能是一个巨型恒星或许多恒星爆发后坍缩成的巨大引力场——即黑洞时产生的天体,它的能源就是黑洞。或者是超新星爆发时喷射出来的气体和物质源源不断地流进正在形成的星系中心附近的黑洞的时候,黑洞就爆发成了一个类星体。随着爆发的持续,它本身会变得特别明亮。事实上类星体本身就是一个星系核,由于它特别明亮,所以我们难以看到这个星系中的其他恒星。
  对类星体巨大的红移尚有多种解释:一种是宇宙学红移,即认为红移是由于类星体的退行产生的,反映了宇宙的膨胀;另一种认为是大质量天体的强引力场造成的引力红移;还有的认为是多普勒红移。现在天文学家正在寻找和类星体有物理联系的天体以确定类星体的距离。
  起点中文网 qidian。 欢迎广大书友光临阅读,最新、最快、最火的连载作品尽在起点原创!

天文观测
更新时间2008…9…2 12:27:02  字数:1892

 观测天体的重要手段是天文望远镜。可以毫不夸张地说,没有望远镜的诞生和发展,就没有现代天文学。随着望远镜在各方面性能的不断改进和提高,天文学也正经历着巨大的飞跃,迅速推进着人类对宇宙的认识。
  1608年,荷兰眼镜商李波尔赛偶然发现用两块镜片可以看清远处的景物,受此启发,制造了人类历史第一架望远镜。1609年,天文学家伽利略制作了一架口径4。2厘米,长约1。2米的折射式望远镜。这架望远镜将天文学带入了望远镜时代。
  意大利数学家、天文学家和物理学家伽利略(1564-1642)。
  伽利略发明的的折射式望远镜。
  英国物理学家、数学家牛顿(1642-1727)。
  牛顿发明的反射式望远镜。
  美国蒙特威尔森天文台的Hooker望远镜。
  日本的昴星团望远镜(Subaru),安装在美国夏威夷。
  全球最大的已投入使用的凯克望远镜。
  美国的Sloan2。5m数字式巡天望远镜。
  欧洲南方天文台甚大望远镜(VLT)。
  全球最大的单镜面光学望远镜HET。
  美国主持建造的双子(Gemini)望远镜。
  位于美国Kitt山的著名的2。1m光学天文望远镜。
  随后在1611年,德国天文学家开普勒又将天文望远镜作了改进,提高了放大倍数。直到今天人们使用的折射式望远镜还是这两种。天文望远镜采用的是开普勒式。折射望远镜的优点是焦距长,底片比例尺大,对镜筒弯曲不敏感,比较适合于做天体测量方面的工作。但是它也有一定的缺陷,巨大的光学玻璃浇制也十分困难,到1897年折射望远镜的发展达到顶点,技术上的限制使得此后的一百多年中再也没有更大的折射望远镜出现。
  1668年诞生了第一架反射式望远镜。经过多次磨制非球面的透镜失败后,牛顿另辟思路发明了反射望远镜。用反射镜代替折射镜是一个巨大的成功。它有许多优点,而且相对于折射望远镜比较容易制作,虽然它也存在固有的不足。
  折反射式望远镜最早出现于1814年。到了1931年,德国光学家施密特将一块近于平行板的非球面薄透镜与球面反射镜相配合,制成了一架折反射望远镜。这种望远镜光力强、视场大、象差小,适合于拍摄大面积的天区照片,尤其是对暗弱星云的拍照效果非常突出。这类望远镜已经成了天文观测的重要工具。它兼顾折射和反射两种望远镜的优点,非常适合业余的天文观测和摄影。
  三百多年来,光学望远镜一直是天文观测最重要的工具。
  乌鲁木齐天文台的25m射电望远镜。
  上海天文台的25m射电望远镜。
  全球最大的美国阿雷西博射电望远镜。
  美国的VLBA射电望远镜阵列。
  哈勃空间望远镜。
  欧洲空间局的XMM空间望远镜。
  1932年,央斯基(Jansky。K。G)用无线电天线探测到来自银河系中心(人马座方向)的射电辐射,标志着人类打开了在传统光学波段之外进行观测的第一个窗口。二次大战后,射电天文学脱颖而出。射电望远镜为射电天文学的发展起了关键的作用。六十年代天文学的四大发现:类星体、脉冲星、星际分子和宇宙微波背景辐射,都是用射电望远镜观测得到的。
  除了射电观测,非可见光天文观测还包括红外观测、紫外观测、X射线观测和γ射线观测等。由于这几种天文观测受地球大气的影响更大,人们往往将望远镜安装在飞机上,或用热气球载上高空。此后又用火箭、航天飞机和卫星等空间技术将望远镜送到地球大气层外。
  空间观测设备与地面观测设备相比,有极大的优势。光学空间望远镜可以比在地面接收到宽得多的波段。由于没有大气抖动,分辨率也得到了极大的提高。空间没有重力,仪器也不会因自重而变形。
  以天文学家哈勃的名字命名的哈勃空间望远镜(HST)是由美国宇航局主持建造的四座巨型空间天文台中的第一座,也是所有天文观测项目中规模最大、投资最多、最受公众注目的一项。它筹建于1978年,设计历时7年,1989年完成,并于1990年4月25日由航天飞机运载升空,耗资30亿美元。但是由于人为原因造成的主镜光学系统的球差,不得不在1993年12月2日进行了规模浩大的修复工作。成功的修复使哈勃望远镜的性能达到甚至超过了原先设计的目标。观测结果表明它的分辨率比地面的大型望远镜高出几十倍。它对国际天文学界的发展有非常重要的影响。
  起点中文网 qidian。 欢迎广大书友光临阅读,最新、最快、最火的连载作品尽在起点原创!

关于天文学(人与宇宙)
更新时间2008…9…2 12:27:52  字数:2737

 天文学的起源可以追溯到人类文化的萌芽时代。远古时代,人们为了指示方向、确定时间和季节,而对太阳、月亮和星星进行观察,确定它们的位置、找出它们变化的规律,并据此编制历法。从这一点上来说,天文学是最古老的自然科学学科之一。
  早期天文学的内容就其本质来说就是天体测量学。从十六世纪中哥白尼提出日心体系学说开始,天文学的发展进入了全新的阶段。此前包括天文
返回目录 上一页 下一页 回到顶部 2 0
未阅读完?加入书签已便下次继续阅读!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!